Key determinants of biopreparedness

Part II : Treatment and vaccine development

The industry perspective on vaccines : the way forward

Jean Lang MD,PhD
aVP R&D sanofi pasteur
IMI Stakeholders Forum
September 29th 2016 Brussels , Belgium
Europe Epidemic Preparedness & Response: Public Private Partnership Joint Metrics of Success
(From CEPI)

- **Response time** – Defined milestones of safe and effective vaccines ready for scale up at initial stages of outbreaks of epidemic potential

- **Complimentarity** – Effective and well-adjusted to the existing organizational ecosystem

- **Agility & Efficiency** – Proven capacity for rapid scale-up & responsive R&D, streamlined regulatory processes

- **Sustainability** – In both financing & results
Europe Epidemic Preparedness & Response : Public Private Partnership Key Principles for Industry

- **Partnered**: Advanced R&D /IO Devt- Mfg Partnerships
- **Incentivized**: External Funding: Philanthropic – Public/ Hybrid
- **Flexible**: RFPs/PDPs per Phases, Pathogens, Technologies
- **Deliverables Oriented**: Science and Milestones based Work plan
- **Inclusive**: MNC various capabilities /technologies i.e. diversity of business fit
- **Interdependence (Trust based Sol) vs Independence (Bias /CoI)**
Europe Epidemic **Preparedness** PPP Drivers

- **Phase:** Early: Pre-clinical to Phase I/ Clinical PoP
 Late: Clinical PoP to Phase IIb

- **Key Private Sector Players:** R&D Driven « End to End » Companies

- **P5 Measures to address gaps (« Push » Public Private Partnership Principles)**
 - **What:** Public / ID threats that are relevant to EU (vs WHO/CEPI)
 Early detection and thresholds for Preparedness and Response Phases eg GLOPID-R
 ID Agents Epidemiological, Political Decision Trees e.g. neighboring countries
 (Turkey/CCHF, Middle East/MERS) , French Overseas territories (Zika)
 - **How:** Private /« P5 Incentives »
 Several RFPs to various R&D Industry Partners to optimize Probability of Success
 - **Avoid Du/n-plication**
 Need for Interface/Alignment within EU for Privaten/Publicn Actors eg EMA, WHO
 (Normative Role) & CEPI (Workplan RFPs & Funding)
Europe Epidemic **Response** PPP Drivers

- **Phase**: Early: Phase III + M Tech Scale-Up – Limited Stockpiling
 Late: Manufacturing - Industrial Facility – Vaccination Campaigns

- **Key Private Sector Players**: GMP Quality Driven Companies

- **P6 (Push + Pull) Measures** to address gaps (Costs +++)
 - **What**: Public/Private Manufacturing technology / Industrial Affairs driven
 - ID threats /IO technology Platforms eg Vero cell / Live – Inactivated and/or Proteins, mRNA, Adjuvants/Formulations etc.
 - **How**: Private / « P6 Incentives »
 - MNC Access Contracts eg Advance Market Commitments, with specified geographies, timelines, Volume /years. Free pricing unless « de-linkage »
 - Avoid Du/n-plication
 - Need for Interface/Alignment within EU for Private/Public and Procurement Agencies eg MoHs, GAVI, UNICEF, PAHO
Example 1: SARS Vaccine from Project initiation to Ph I Lots

Vaccine Development Timeline

- CDC MTA - Receipt of CDC Seed
- Material/Erasmus Agreement
- Personnel Training
- NIAID Agreement (n 180 days)
- Change Over of R&D BSL-3 T1 Facilities
- CDC/NIAID - Receipt of Reagents (eg, Abs)

Worldwide Breakdown of SARS cases:
- 8,445 worldwide
- 790 deaths

SOURCE: World Health Organization, June 12, 2003
Example 2: Ebola Vaccine Clinical Trial Accelerated Timeline

TIMELINE TO A CLINICAL TRIAL

During the Ebola epidemic, some of the steps in going from receiving grant money to testing a candidate drug on a patient were achieved in record time. Other steps, such as getting agreement on contracts, must be completed much more quickly in the next epidemic.

- Grant awarded
- Data-management system in place
- Protocol for clinical-trial designed
- Drug selected
- Contracts drawn up and signed
- Approval by Oxford ethics committee
- Approval by Liberian ethics committee
- Import licence obtained for drug
- Drug exported from United States
- Final agreements between MSF, drug company and Oxford
- First patient given drug

Week

<table>
<thead>
<tr>
<th>Week</th>
<th>Sep 2014</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Epidemic Disease Research Group Oxford
Preclinical

Clinical
28 day mortality

<table>
<thead>
<tr>
<th>Deaths</th>
<th>Total</th>
<th>Control</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>21/71</td>
<td>13/35</td>
<td>8/36</td>
</tr>
<tr>
<td></td>
<td>29.6%</td>
<td>37.1%</td>
<td>22.2%</td>
</tr>
</tbody>
</table>
Monoclonal Antibodies: Treatment and Prevention of CHIKV

CHIKV is an arbovirus transmitted by Aedes vectors. After a week of acute febrile illness, most patients continue to suffer from chronic arthralgia for months to years. There is no curative treatment or vaccine. High healthcare cost and social burden due to affecting young mobile adults.

The virus is expected to spread to new areas. A new outbreak can lead to over million cases.

Collaboration with Vanderbilt University

Highly potent human mAb from convalescent patient sera rapidly isolated, assessed, optimized and developed to benefit patients.

Precandidate mAb was identified and showed high potency in in vitro & in vivo pharmacological models.

External partnership with US DoD / DARPA

Candidate nomination and FIH projected respectively in 2Q2017 and 2018.

Highly Potent anti CHIKV human mAb with prolonged half life for prevention and treatment of CHIKV disease

Therapeutic cure for CHIKV-associated chronic disease

Prevention of infection in individuals at high risk/post exposure prophylaxis in an epidemic context

Limited SC/IM injections

One drug to limit the impact of acute phase and avoid development of chronicity.
Examples of Public / Private R&D Models to address ID Preparedness & Response for flexible Vaccine Development Capacity

- Global Fund for Vaccine Development
- Coalition for Epidemic Preparedness Innovations (CEPI)
- BARDA Platform initiative

- GSK Global Vaccine R&D Hubs (Italy)
 - Maryland BPO Bio Preparedness Org:
 - B: RD Laboratories
 - C: 2 Pilot Plants, GMP Testing, Clinical Immunology
 - Administration (throughout)

- Sanofi – IDRI –BMGF GHVCI « Global Health Vaccine Center of Innovation »

Current capacity:
- 5509 sq. meters
- 104 scientists (39 PhDs)
- 20 admin (3 PhDs)

Expandable to:
- 7246 sq. meters
- (flexible/USD) 200 scientists
Europe « Pull » PPP Incentives to address ID Preparedness & Response gaps: Proposals

- Fast track centralized & streamlined Regulatory review
- EU Specialized EU reference expert country/pathogen
- Conditional License based on Phase IIb (Animal Rule?)
- EU Priority Review Vouchers
- Pharmacovigilance deployment based on e-tools for Vaccination safety follow-up (because of limited licensure clinical database)
- Creation of a New EU specific fund with a budget x100 MM Euros (Preparedness & Response)
 - Will focus and support the Operational Vaccine Research to Vaccination workplans (through EU RFPs) to be coordinated with CEPI
- Creation of a EU « BARDA like » or EU « IFFIM » like financing facility
Examples of IMI2, H2020, EDCTP EU PPPs
Focus on non-compete supportive infrastructure & Enabling Tools

- Epidemic detections, Surveillance & Diagnosis
- Preclinical Model / Surrogate Biomarkers
- Clinical Trial Networks / Efficacy Stat Modelling (R0 understanding)
- Regulatory Licensure
- Post licensure effectiveness
- Pharmacovigilance ad-hoc Processes
- Patients Engagement ie mitigate Vaccine Hesitancy
Thank You!

- Interdependence: Trust based Sharing of Interests