

Exploring the potential of lipidoid-polymer hybrid nanoparticles to deliver oligonucleotides to intracellular pharmacological targets

Vaccine Design and Delivery Group
Department of Pharmacy, University of Copenhagen
Copenhagen, Denmark

Research aim

Engineering of lipid-polymer hybrid nanoparticles with lipidoids as lipid component and PLGA as polymer component for local delivery of oligonucleotides (small interfering ribonucleic acids, siRNA) to lungs.

Disease target: Chronic obstructive pulmonary disease

Pathophysiological manifestations: Inflammation, mucus hypersecretion and emphysema

Major findings

Platform technology

Components: Cargo, lipidoid, and poly(DL-lactic-

In vivo efficacy

co-glycolic acid)

Cargoes

- Small interfering RNA (siRNA)
- Antisense oligos
- Micro RNA

Acute lung

injury model

Messenger RNA

 Particle size Zeta potential

Encapsulation

efficiency

• siRNA loading

Morphological analysis and structural understanding of particle formation

Lipidoid content (% w/w)

- 48.15

In vitro evaluation

Lipidoid-polymer hybrid nanoparticles (LPNs)

In vivo biodistribution

In vivo studies

24 h

after lung administration

Potent in vitro transfection efficiency and high cell viability

Thanki et al. Eur J Pharm Biopharm, 2017

5 min

Example of the potential of the developed technology (LPNs)

Toll-like receptor 4 (TLR4) activation (marker of immunogenicity) is dependent on the type of formulation used

On-going activities

Two active industrial collaborations for loading of clinically relevant cargos in LPNs

