Developmental changes in resting state power spectrum and functional connectivity in autism spectrum disorder
Pilar Garces1, Sarah Baumeister2, Luke Mason3, Christopher Chatham1, Stefan Holiga1, Juergen Dukant1, Xavier Liogier d’Ardhuy1, Will Spooren1, Daniel Brandeis2,4, Joerg Hipp3 and the EU-AIMS LEAP group
1Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
2Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
3Centre for Brain and Cognitive Development, Birkbeck, University of London, UK
4Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Switzerland

Facts & Figures
Start date: 01/04/2012
End date: 31/03/2018
IMI funding: 20 490 981 €
EFPIA in kind: 9 773 543 €
Other: 7 216 089 €
Total cost: 37 480 613 €
Project website: www.eu-aims.eu

The LEAP (Longitudinal European Autism Project) is part of EU-AIMS. It is to date the largest multi-centre, multi-disciplinary observational study worldwide that aims to identify and validate stratification biomarkers for ASD. LEAP includes multimodal biomarker assessments. In this poster, we report on Resting state EEG, a non-invasive measure of the spontaneous brain activity.

Challenge
Understanding the differences in brain function between individuals with Autism Spectrum Disorder (ASD) and typically developing (TD) controls to derive robust biomarkers is crucial for developing effective treatments.
- Resting state EEG is a promising technique to derive biomarkers for ASD
 - Direct and non-invasive measure of neuronal function
 - Capture spontaneous local and long-range synchronization
 - Deployable (cost + availability + feasibility) across broad range of age and IQ
- Lots of candidates but no validated biomarkers derived from resting state EEG exist to date:
 - >50 publications
 - Contradictory results
 - Small sample sizes
 - Need for unbiased evaluation in a well-powered and well-controlled dataset, considering potential confounding effects of IQ, age and gender.

Approach & Methodology
Resting state EEG was acquired for 212 high functioning ASD and 199 TD (2 min eyes open, 2 min eyes closed in alternating blocks of 30 sec) in 5 European sites. After a careful data homogeneization and cleaning process, two types of measures were extracted:

Results
- Power spectrum and functional connectivity evolved from childhood to adulthood following patterns previously described in typical development.
- No significant effects of ASD diagnosis were found in mean or variance for PS of FC (p>0.05)

Value of IMI collaboration
- We have leveraged the largest comprehensive resting state EEG dataset in high functioning ASD to evaluate the developmental trajectories of ASD PS and FC.
- We demonstrated the quality of the dataset and pre-processing by reproducing well-known age dependencies in TDs.
- The maturation of spontaneous local and long-range synchronization in ASD closely follows a typical development trajectory through childhood, adolescence and early adulthood

Impact & take home message
- No robust alterations ASD vs TD were found. This disconfirms patterns of alterations reported in previous small sample studies.
- This work demonstrates that resting state EEG PS and FC do not hold potential as biomarkers of idiopathic high functioning ASD
- This differentiates the physiology of high functioning ASD from genetically defined syndromes associated with ASD which have a clear resting state EEG phenotype.

This work has received support from the IMI Joint Undertaking under grant agreement no. 115300. Financial contributions from EU (grant FP7/2007-2013), the EFPIA, companies in-kind contributions and Autism Speaks.

1
2
3
4
Developmental changes in resting state power spectrum and functional connectivity in autism spectrum disorder