

Developmental changes in resting state power spectrum and functional connectivity in autism spectrum disorder

Pilar Garces¹, Sarah Baumeister², Luke Mason³, Christopher Chatham¹, Stefan Holiga¹, Juergen Dukart¹, Xavier Liogier d'Ardhuy¹, Will Spooren¹, Daniel Brandeis^{2,4}, Joerg Hipp¹ and the EU-AIMS LEAP group

¹Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland

² Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany

³Centre for Brain and Cognitive Development, Birkbeck, University of London, UK

⁴ Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Switzerland

Facts & Figures

Start date: 01/04/2012

31/03/2018 End date:

20 490 981 € IMI funding:

9 773 543 € EFPIA in kind:

Other: 7 216 089 €

Total cost: 37 480 613 €

Project website: www.eu-aims.eu

The LEAP (Longitudinal European Autism Project) is part of EU-AIMS. It is to date the largest multi-centre, multi-disciplinary observational study worldwide that aims to identify and validate stratification biomarkers for ASD. LEAP includes multimodal biomaker assessments. In this poster, we report on Resting state EEG, a noninvasive measure of the spontaneous brain activity.

Challenge

Understanding the differences in brain function between individuals with Autism Spectrum Disorder (ASD) and typically developing (TD) controls to derive robust biomarkers is crucial for developing effective treatments.

- Resting state EEG is a promising technique to derive biomarkers for ASD
 - Direct and non-invasive measure of neuronal function
 - Capture spontaneous local and synchronization
 - Deployable (cost + availability + feasibility) across broad range of age and IQ
- Lots of candidates but no validated biomarkers derived from resting state EEG exist to date:
 - >50 publications
 - Contradictory results
 - Small sample sizes
- Need for unbiased evaluation in a well-powered and well-controlled dataset, considering confounding effects of IQ, age and gender.

Approach & Methodology

0 time (s)

Resting state EEG was acquired for 212 high functioning ASD and 199 TD (2 min eyes open, 2 min eyes closed in alternating blocks of 30 sec) in 5 European sites. After a careful data homogeneization and cleaning process, two types of measures were extracted:

Results

- Power spectrum and functional connectivity evolved from childhood to adulthood following patterns previously described in typical development.
- No significant effects of ASD diagnosis were **found** in mean or variance for PS of FC (p>0.05)

Value of IMI collaboration

- We have leveraged the largest comprehensive resting state EEG dataset in high functioning ASD to evaluate the developmental trajectories of ASD PS and FC.
- We demonstrated the quality of the dataset and pre-processing by reproducing well-known age dependencies in TDs.
- The maturation of spontaneous local and longrange synchronization in ASD closely follows a typical development trajectory through childhood, adolescence and early adulthood

Impact & take home message

- No robust alterations ASD vs TD were found. This disconfirms patterns of alterations reported in previous small sample studies.
- This work demonstrates that resting state EEG PS and FC do not hold potential as biomarkers of idiopathic high functioning ASD
- This differentiates the physiology of high functioning ASD from genetically defined syndromes associated with ASD which have a clear resting state EEG phenotype.

