

Developing predictive *in silico* models for liver toxicity endpoints from *in vivo* histopathology data

Pinto-Gil K, Gregori-Puigjane E, Pasamontes-Funez I, Gómez-Tamayo JC, Stela B, Sanz F and Pastor M.

Research Programme on Biomedical Informatics (GRIB), FIMIM, Barcelona, Spain.

Facts & Figures

Start date:	01/01/2010			
End date:	31/12/2016			
Contributions				
IMI funding:	6,910,018€			
EFPIA in kind:	10,157,590€			
Other:	1 719 500 €			
Total Cost:	18,877,109€			
Project website:	www.etoxproject.eu			
Social media: www.youtube.com/watch?v=fMWpDUaOdNc				

Challenge

- The eTOX project compiled a collection of nearly 9000 of such studies.
- In this work we describe how these collected data can be exploited for the development of predictive models for *in vivo* toxicity endpoints.

Approach & Methodology

Results

Distribution of qualitative hepatotoxicity scorings.

Liver in vivo Endpoint	Positive compounds	Negative compounds
Degeneration (DEG)	164	168
Inflamatory (INF)	94	164
Non-neoplasic Proliferative lesions (PRO)	82	164

Representation of the confusion matrix, sensitivity and specificity for the best qualitative models obtained using conformal Random Forest Classifier.

Quality parameters of conformal model predictions.

Fachariat	Internal prediction (cross-validation)		External prediction	
Endpoint	Coverage	мсс	Coverage	мсс
DEG	0.47	0.55	0.48	0.58
INF	0.74	0.64	0.81	0.44
PRO	0.64	0.45	0.65	0.29

In general, the quality of the models is acceptable, if we consider the complexity of the *in vivo* endpoints, representing many different mechanisms of liver toxicity.

Value of IMI collaboration

- The results shown here are only an example of how the results of the eTOX project (the eTOX database and eTOXsys) are being exploited for practical purposes.
- The **eTOX** database represents a successful example of precompetitive sharing of information between 13 pharmaceutical companies, made possible thanks to the public-private partnership IMI project.

Impact & take home message

- The information present in RDT reports generated for regulatory purposes can be transformed to obtain data amenable for developing predictive models.
- These models exemplify the practical use of the *in vivo data* collected by the **eTOX** project.
- Precompetitive collaboration can produce valuables resources which can be exploited to obtaining safer and more effective drugs, in a faster way.

innovative medicines initiative efpta This work has received support from the EU/EFPIA/Innovative Medicines Initiative Joint Undertaking (eTOX grant no 15002).