SAFE-T

Safer And Faster Evidence-based Translation

http://www.imi-safe-t.eu

IMI Stakeholder Forum June 14-15, 2010

Michael Merz, MD, Novartis Institutes for BioMedical Research, Basel
Outline

• Background
• Definitions
• SAFE-T scope and objectives
• Structure and deliverables
• Biomarker qualification process
• Interfaces
• Achievements
• Next steps
Acknowledgements

(Incomplete) SAFE-T participant list, team leaders

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Position</th>
<th>Company</th>
<th>Position</th>
<th>Company</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neus Prats</td>
<td>Almirall</td>
<td>Katja Matheis</td>
<td>Boehringer Ingelheim</td>
<td>Andrew Nicholls</td>
<td>GSK</td>
<td>Steve Hall</td>
</tr>
<tr>
<td>Eric Massana</td>
<td>Almirall</td>
<td>Christine Rentzsch</td>
<td>Boehringer Ingelheim</td>
<td>Elaine A. Irving</td>
<td>GSK</td>
<td>Stefan Sultana</td>
</tr>
<tr>
<td>David Sciberras</td>
<td>Amgen</td>
<td>Arno Kalkuhl</td>
<td>Boehringer Ingelheim</td>
<td>Fiona J McClure</td>
<td>GSK</td>
<td>Michael Lawton</td>
</tr>
<tr>
<td>James Matcham</td>
<td>Amgen</td>
<td>Ulf Neumann</td>
<td>Aachen Hospital</td>
<td>Theo Dare</td>
<td>GSK</td>
<td>Silvia Guionaud</td>
</tr>
<tr>
<td>Patrice Cacoub</td>
<td>AP-HP</td>
<td>Volker Schmitz</td>
<td>Charité Hospital</td>
<td>Landry Cochard</td>
<td>Interface Europe</td>
<td>Denise Robinson-Gravatt</td>
</tr>
<tr>
<td>Thierry Poynard</td>
<td>AP-HP (GHPS)</td>
<td>Eckart Schott</td>
<td>Charité Hospital</td>
<td>Marc Loher</td>
<td>Interface Europe</td>
<td>Bernard Souberbielle</td>
</tr>
<tr>
<td>Mona Munteanu</td>
<td>AP-HP (GHPS)</td>
<td>Ralph Schindler</td>
<td>Charité Hospital</td>
<td>Piret Noukas</td>
<td>Interface Europe</td>
<td>Jim Dykens</td>
</tr>
<tr>
<td>Joe Keenan</td>
<td>ARGUTUS</td>
<td>Thomas Berg</td>
<td>Leipzig University</td>
<td>Nicole Schneiderhan-Marra</td>
<td>NMI</td>
<td>Peter Colman</td>
</tr>
<tr>
<td>Barry Hayes</td>
<td>ARGUTUS</td>
<td>Florian van Bömmel</td>
<td>Leipzig University</td>
<td>Jens Göpfert</td>
<td>NMI</td>
<td>Geoff Johnston</td>
</tr>
<tr>
<td>Mark Pinches</td>
<td>AstraZeneca</td>
<td>Lina Badimon</td>
<td>CSIC-ICCC</td>
<td>Stefanie Rimmele</td>
<td>NMI</td>
<td>Andrew Berridge</td>
</tr>
<tr>
<td>Ina Schuppe Koistinen</td>
<td>AstraZeneca</td>
<td>Teresa Padro</td>
<td>CSIC-ICCC</td>
<td>Hannes Planatscher</td>
<td>NMI</td>
<td>Jacky Vonderscher</td>
</tr>
<tr>
<td>Håkan Andersson</td>
<td>AstraZeneca</td>
<td>Xavier Sánchez-Valle</td>
<td>CSIC-ICCC</td>
<td>Frank Dieterle</td>
<td>Novartis</td>
<td>Lucette Doessegger</td>
</tr>
<tr>
<td>Sally Price</td>
<td>AstraZeneca</td>
<td>Thomas Joos</td>
<td>EDI</td>
<td>Peter Hoffmann</td>
<td>Novartis</td>
<td>Joachim Eberle</td>
</tr>
<tr>
<td>Jesper Hedberg</td>
<td>AstraZeneca</td>
<td>Jean-Marc Vidal</td>
<td>EMA</td>
<td>Dietrich Rothenbacher</td>
<td>Novartis</td>
<td>Christoph Wandel</td>
</tr>
<tr>
<td>Björn Glinghammar</td>
<td>AstraZeneca</td>
<td>Hüseyin Firat</td>
<td>Firalis</td>
<td>Ursula Knauf</td>
<td>Novartis</td>
<td>Rodolfo Gasser</td>
</tr>
<tr>
<td>Jenny McKay</td>
<td>AstraZeneca</td>
<td>Kaidre Bendjama</td>
<td>Firalis</td>
<td>John Prince</td>
<td>Novartis</td>
<td>Nadir Arber</td>
</tr>
<tr>
<td>Axel Kretschmer</td>
<td>Bayer Schering</td>
<td>Peter Thomann</td>
<td>Firalis</td>
<td>Jeffrey Donohue</td>
<td>Novartis</td>
<td>Bernd Stowasser</td>
</tr>
<tr>
<td>Thomas Krahn</td>
<td>Bayer Schering</td>
<td>Béatrice Molac</td>
<td>Firalis</td>
<td>David Laurie</td>
<td>Novartis</td>
<td>Isabelle Clavier</td>
</tr>
<tr>
<td>Heidrun Ellinger-Ziegelbauer</td>
<td>Bayer Schering</td>
<td>Fuat Firat</td>
<td>Firalis</td>
<td>Marie Anne Valentin</td>
<td>Novartis</td>
<td>Magali Guffroy</td>
</tr>
<tr>
<td>Matthias Gottwald</td>
<td>Bayer Schering</td>
<td>John Haselden</td>
<td>GSK</td>
<td>Philip Bentley</td>
<td>Novartis</td>
<td>Joachim Tillner</td>
</tr>
</tbody>
</table>
SAFE-T: because safety matters...

- Between 1900 and 2000, average life expectancy has increased from 45 to 77 years of age
 - Part of this is due to innovative medicines

- However, making medicines safer is still one of the key challenges in pharmaceutical development
 - In the US, fatal Adverse Drug Reactions (ADRs) are the 4th to 6th leading cause of death*
 - Incidence has been stable for more than 30 years*
 - Fatal ADRs in the US alone are in the range of 100’000 per year*
 - Costs directly attributable to ADRs may lead to an additional $1.56 to $4 billion in direct hospital costs per year in the US*

- For many serious drug side effects, tools for adequate prediction, detection, and monitoring are lacking

- This is particularly the case for drug induced injury to the kidney, the liver, and the vascular system

Drug safety: room for improvement
The economic perspective

- Around 90% of compounds entering clinical development fail

Development phase

- 30% of these failures are due to clinical safety and toxicology

Kola et al. (2004), Nat Rev Drug Discovery ; 3: 711-15
Drug safety: need for improvement

The patient perspective

Drug induced liver injury (DILI)
Worst cases transplantation, death

Drug induced kidney injury (DIKI)
Worst cases hemodialysis, transplantation, death

Drug induced vascular injury (DIVI)
Worst cases multi-organ failure, death

IMI Stakeholder Forum 2010, SAFE-T, Merz M
Some definitions…

• **Clinical endpoint:**
 A characteristic or variable that reflects how a patient feels, functions, or survives.

• **Biological marker (biomarker):**
 A characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.

• **Surrogate endpoint:**
 A biomarker that is intended to substitute for a clinical endpoint. A surrogate endpoint is expected to predict clinical benefit (or harm or lack of benefit or harm) based on epidemiologic, therapeutic, pathophysiologic, or other scientific evidence.

I Known valid biomarker:
A biomarker that is measured in an analytical test system with well-established performance characteristics and for which there is widespread agreement in the medical or scientific community about the physiologic, toxicologic, pharmacologic, or clinical significance of the results

II Probable valid biomarker:
A biomarker that is measured in an analytical test system with well-established performance characteristics and for which there is a scientific framework or body of evidence that appears to elucidate the physiologic, toxicologic, pharmacologic, or clinical significance of the test results.
A probable valid biomarker may not have reached the status of a known valid marker because, for example, of any one of the following reasons:

- The data elucidating its significance may have been generated within a single company and may not be available for public scientific scrutiny.
- The data ..., although highly suggestive, may not be conclusive.
- Independent verification of the results may not have occurred.

III Exploratory biomarker:
A biomarker that does not match criteria I or II.
DILI as an example
Withdrawals and boxed warnings

1959 Iproniazid
1967 Oxyphenisatin
1970 Ibufenac
1982 Benoxaprofen Ticrynafen
1985 Perhexiline
1996 Alpidem
1997 Tolcapone Tolrestat
1998 Bromfenac
2000 Troglitazone Aminoptine
2001 Trovafloxacin
2003 Nefazodone
2005 Pemoline
2006 Ximelagatran
2007 Lumiracoxib

Renal, 4.8
Psychiatric, 3.7
Neurologic, 4.1
Drug interaction, 4.1
Hematologic, 10.5
Cardiotoxic, 8.3
Carcinogenic, 6.3
CNS, 28.2

Blackbox warnings

IMI Stakeholder Forum 2010, SAFE-T, Merz M
Biomarker attributes of interest

• Patient level
 – Lower injury threshold
 – Earlier time to onset
 – Larger extent of changes
 – Improved specificity
 – Better suited to monitor and predict clinical course
 – Better suited to assess causality

• Population level
 – Earlier and more specific signal detection in clinical development programs
 – Improved mechanistic insight
 – Superior in terms of identifying underlying pathology
 – Better suited to predict human risk from animal toxicity
Key challenges for biomarker qualification

- Substantial background variability in initial candidate markers
- Biomarker response varies across different populations
- Large initial number of biomarker candidates requires substantial sample volumes to be taken
- Key target responses, i.e. specific adverse drug reactions, suitable and accessible for qualification are overall very rare

- Large sample sizes are required
- Multitude of patient populations need to be included

Qualification cannot be achieved by one company alone
Three organs needing better clinical monitoring of drug-induced injuries:

Kidney: current standards increase only once 50-60% of kidney function is lost.

Liver: current standards are not sufficiently sensitive and specific and do not adequately discriminate adaptors from patients at high risk to develop liver failure.

IMI SAFE-T Consortium

Objectives

• To evaluate utility of safety BMs for monitoring DIKI, DILI and DIVI in humans.

• To develop assays and devices for clinical application of safety BMs

• To compile enough evidence to qualify safety BMs for regulatory decision making in clinical drug development and in a translational context

• To gain evidence for how safety BMs may also be used in the diagnosis of diseases and in clinical practice
SAFE-T structure and deliverables

- Evidence-based decision making
- More reliable causality assessment
- Better mechanistic understanding
- Safer translation to clinical development
- Earlier and more specific signal detection
- Enhanced clinical monitoring
 - Improved patient safety
 - Reduced attrition rates
 - Accelerated and safe approval of innovative medicines

WP1: Development of generic scientific qualification strategy for translational safety biomarkers

WP2: Qualification of Translational DIKI BMs
WP3: Qualification of Translational DILI BMs
WP4: Qualification of Translational DIVI BMs

WP5: BMs assays development, validation and testing of clinical samples
WP7: Biobank for qualification of translational BMs

WP6: Integrative data analysis & project database

WP8: Communication, dissemination, training and exploitation
WP9: Consortium Management

VALIDATED BM QUALIFICATION STRATEGY
DATABASE OF HUMAN BIOMARKER PROFILES
QUALIFIED BMs & VALIDATED ASSAYS FOR DILI, DIKI, DIVI

BIOBANK

COMUNICATION DISSEMINATION TRAINING EXPLOITATION
SAFE-T participants

EFPIA
- AstraZeneca
- Novartis
- Pfizer
- Roche
- Bayer Healthcare
- Sanofi Aventis
- GSK
- Amgen
- Lilly
- Almirall

Academia
- NMI
- ASSISTANCE PUBLIQUE
- HÔPITAUX DE PARIS
- Charité
- ICRC
- The Tel Aviv Sourasky Medical Center

SMEs
- FIRALIS
- INTERFACE EUROPE
- ARACUS Medical
- EDIB
- Immunologic

Advisors
- Ernea
- FDA

Collaborators
- Universidad de Salamanca
- Universidad de Malaga
- University of Liverpool
Funding and timing

Financing

- IMI funding: 13.9 mio EUR
- EFPIA contribution, mainly in kind: 17.7 mio EUR
- Contribution academia/SME: 4.1 mio EUR
- Total project cost: 35.7 mio EUR

Timing:

- Starting date: June 15, 2009
- Duration: Five years
Biomarker qualification process

Elements and process flow

- **Biomarker step 1 list**
 - Literature
 - Databases
 - SAFE-T sources

- **Biomarker step 2 list**
 - Healthy volunteers
 - Patients with x-disease
 - Patients with non-x disease
 - Patients on x-toxic drugs

- **Biomarker step 3 list**
 - Assay / stat analysis / select specific + sensitive BMs

- **Biomarker step 4 list**
 - Qualification

- **Regulatory advice**
 - Assay availability / development
 - Background variability
 - Thresholds (ROCs)

- **Assay / stat analysis / select specific + sensitive BMs**

- **Regulatory approval**
 - Submit to health authorities

Timeline
- Q2 2009
- Q1 2010
- Q2 2011
- Q2 2014
Biomarker discovery
Paralleling qualification

Why?
• Biomarker candidates may not cover all objectives of SAFE-T
 – Lack of susceptibility markers
 – For DILI, lack of sensitive functional markers, some pathologies poorly represented
 – Most markers identified in pre-clinical models

How?
• Based on human cases from SAFE-T clinical studies
• Characteristic changes in serum proteome and metabolome expected
 – Mass spec and protein antibody array analyses of plasma samples planned
• Genetic analysis not planned as yet
SAFE-T gaps and challenges

• Primary scope is **clinical** qualification of **soluble** translational safety biomarkers

• Out of scope are:
 o Genetic susceptibility markers
 o Preclinical assay validation
 o Preclinical biomarker discovery

• Case and sample access
 – Particularly for DILI and DIVI, getting access to a sufficient number of suitable cases even within this large consortium may be challenging
 – Logistics to collect samples as close as possible to and around an event will be demanding
 – Other groups and consortia may compete for similar patient populations

• Duplications and overlaps with other consortia need to be avoided
Joining efforts: key to success
SAFE-T’s links to other groups and consortia

Links:
- Existing
- Planned

SAFE-T

PSTC

Predict IV

DILIN

SAEC

Span DILI Reg

Univ Liverpool

Univ Malaga

ECVAM DILI
SAFE-T achievements

• Generic qualification strategy defined
• Draft study protocols for prospective studies being prepared
• Initiated regulatory interactions via briefing meetings with EMA/FDA for DILI and DIKI work packages
 – Qualification strategy supported
 – Obtained constructive feedback on how to further improve the qualification process
 – Agencies are interested to see results of exploratory phase studies
• Reached out to other consortia and institutions in order to establish collaborations
 – Goal: utilize synergies, avoid overlaps and duplications
 – Established collaboration with Predictive Safety Testing Consortium (PSTC)
 – In discussion with Serious Adverse Event Consortium (SAEC)
Next steps

• Incorporate regulatory feedback into qualification strategy
• Set up consortium database
• Finalize exploratory phase study protocols
• Initiate prospective studies
• Include sampling into standard clinical trials
• Finalize agreements with other consortia
Need for better safety biomarkers

Drug induced liver injury (DILI)
DILI biomarkers

Drug induced kidney injury (DIKI)
DIKI biomarkers

Drug induced vascular injury (DIVI)
DIVI biomarkers
Contacts

• Project coordinator: Michael Merz, Novartis
 michael.merz [AT] novartis.com

• Scientific coordinator: Ina Schuppe Koistinen, Astra Zeneca
 Ina.Schuppe-Koistinen [AT] astrazeneca.com

• Managing entity: Nicole Schneiderhan-Marra, NMI
 schneiderhan [AT] nmi.de

• Applicant consortium leader: Hüseyin Firat, Firalis
 hueseyin.firat [AT] firalis.com

www.imi.europa.eu
Backups
Example Glutathione S transferase α (\(\alpha\)GST)

Time profiles as compared to standard markers

- Earlier onset and faster resolution?
- Helpful for causality assessment in a subset of cases?
Biomarker selection process

Example DILI markers

Exploratory phase

Confirmatory phase

Variability in healthy subjects

Response to DILI

Response to non-liver disease

Response to non-DILI liver disease

High

Low

Bad

Good

Yes

No

Drop

Drop

Drop

Information on...

Pathology?

Mechanism?

Disease severity?

Drug-relatedness?

Clinical outcome?