IMIDIA

IMPROVING BETA-CELL FUNCTION AND IDENTIFICATION OF DIAGNOSTIC BIOMARKERS FOR TREATMENT MONITORING IN DIABETES

A. Ktorza, B. Thorens
Diabetes is a metabolic disease characterized by higher than normal blood glucose levels (hyperglycemia) in the fasting state and/or after meals.

Type 1 and type 2 diabetes are the two main types of diabetes.

Type 1 diabetes
- 10 à 15 % of diabetic patients
- Destruction of β cells (autoimmune process)
- Onset in young subjects
- Main feature: weight loss, polyphagia, polyuria, asthenia, glycosuria
- Imperatively requires insulin therapy

Type 2 diabetes
- 85 à 90 % of diabetic patients
- No destruction of β cells but a decrease in functional β cells mass
- Onset during maturity and in the elderly
- Very progressive
- In theory insulin therapy is not required

Micro (retinopathy, nephropathy)- and macro-angiopathic complications (cardio and cerebro vascular diseases)
Diabetes – a pandemic disease of the 21st century

• Number of patients:
 – 2010: 285 million people worldwide
 – 2030: 439 million people worldwide
 (in particular spreading to the younger population)

• Pancreatic β-cells:
 – A complete or relative decrease in insulin secretion by pancreatic beta-cells underlies the development of, respectively, type 1 and type 2 diabetes.
PATHOPHYSIOLOGY OF TYPE 1 DIABETES
A SCHEMATIC REPRESENTATION

β-cell death

NO INSULIN

Insulin resistance

Glucose utilization

Glucose production

Hyperglycaemia
PATHOPHYSIOLOGY OF TYPE 2 DIABETES
A SCHEMATIC REPRESENTATION

β-cell failure

Insulin response to glucose

Insulin resistance

Glucose utilization

Glucose production

Hyperglycaemia
THE AIMS OF TREATMENT OF TYPE 2 DIABETES

To prevent early death and improve quality of life

To prevent micro- and macro vascular complications

Optimal glycaemic control
MAIN AGENTS USED IN THE TREATMENT OF TYPE 2 DIABETES

7 different approaches. No one prevents the progressive deterioration of glycemic control.
PROGRESSIVE DETERIORATION OF GLYCEMIC CONTROL IN TYPE 2 DIABETES

United Kingdom Prospective Diabetes Study

HbA1c (%) vs Years from randomization

Conventional therapy vs Intensive therapy

6.2% upper limit of normal range
Conventional Therapies Do Not Influence β-Cell Failure

Nonoverweight Overweight

β-Cell Function* (%)

Years From Randomization

- Conventional
- Sulfonylurea
- Metformin

β-CELL MASS IN DIABETIC AND NON DIABETIC SUBJECTS

- Observations made post-mortem
- No information on the time-course of the β cell mass

The requirement of non-invasive methods for the measurement of β cell mass
Relationship between functional β cell mass and glycemic control during the progression of diabetes

Objective
To stop the progression of the disease
A Paradigm Shift in Diabetes Therapy: from symptomatic Treatment to Cure

Current treatment options

β-cell medicines: Regeneration Preservation

Symptomatic treatment

Stop disease progression

Disease prevention

Cure
IMIDIA will address key bottlenecks for the development of these new therapies.

- **Novel tools** for the study of:
 - human beta-cell development, function and survival;
 - human beta-cell functional modulation by potential therapeutic compounds;
 - in vivo beta-cell imaging.
IMIDIA will address key bottlenecks for the development of these new therapies

- **Biomarkers:**
 - for the diagnosis and prognosis of beta-cell failure;
 - for monitoring diabetes progression and treatment.

- **Knowledge:**
 - on novel pathways and sites that control beta-cell proliferation, differentiation and apoptosis,
 - on the role of nutrient-regulated pathways in controlling beta-cell mass and function.
Integrated approach
Expected Outcome – I:

• Disease relevant human islet cell lines:
 - will lead to better models for the development and assessment of diabetes therapies.

• Beta islet cell precursor isolation and purification:
 - will help understanding the birth of beta-cells to help find methods for beta-cell regeneration in diabetes.

• A Systems Biology approach of beta-cell demise in type 2 diabetes:
 - will provide better understanding of the beta-cell pathogenesis;
 - will deliver biomarker candidates for diagnosis, prognosis and assessment of therapeutic efficacy.
Expected Outcome – II:

- A network and technology allowing the isolation of human islet cells from surgical specimen of diabetic and non-diabetic patients.

- Unraveling key pathways and sites that control GLP-1 trophic actions on beta-cells.

- New and unique imaging technologies and novel probes for earlier and better monitoring of beta cell function and mass in humans.
Benefit to the patient:

To monitor specific disease progression and enable improved disease management.

To pave the way for the development of β cell focused therapies via:
- Better biomarkers to monitor therapy benefit in patients
- Better disease centric in-vitro and in-vivo models
- Better understanding to enable focused therapeutic approaches
IMIDIA: Collaboration
(Sustainable win-win)

IMIDIA - Collaboration

Data / Results Sharing

Innovation Focus academia

Application Focus industry

In-vitro Models:
Generation of models
Assessment Drug Discovery

Imaging Biomarkers:
In-vitro Assessment Clinical Assessment
Results/achievements so far: 4 months into the project

Tools:
- Evaluation of first version of in-vitro models
- Data acquisition process for Systems Biology established
- Biorepository Harmonization Initiated
- Synthesis of first Imaging Molecules Candidates initiated

Biomarker:
- Human assessment study in preparation
Time and money

Financing

- IMI funding: € 7,074,760
- EFPIA contribution, mainly in kind: € 15,081,800
- Other contributions (e.g. unfunded act., act. in the USA): € 3,750,920
- Total project cost: € 25,907,480

Timing:

- Starting date: 01. Feb. 2010
- Duration: 5 years
imidia
European combined excellence in diabetes research

Leadership team
- Sanofi-Aventis Deutschland
- Servier
- University of Lausanne
- W. Kramer
- A. Ktorza
- B. Thorens

Participants
- AstraZeneca Pharmaceuticals
- Boehringer Ingelheim Pharma
- CEA Institut d’imagerie Biomédicale
- CNRS UMR 7091
- CNRS-University Paris Diderot
- Dresden University of Technology
- F. Hoffmann-La Roche
- Hannover Medical School (MHH)
- Imperial College London
- INSERM U845
- Lilly Deutschland
- Novo Nordisk A/S
- Novartis Institutes
- SARL ENDOCCELLS
- Swiss Institute of Bioinformatics
- University of Geneva
- University of Pisa
- Vrije Universiteit Brussel

Location of key scientific contacts in Europe
Launch of IMIDIA

An Innovative Medicines Initiative Project for Diabetes

Academia, biotech and the pharmaceutical industry have joined forces to fight diabetes.

Frankfurt, Germany / Lausanne, Switzerland / Paris, France - June 14, 2010.
Further information

- www.imidia.org
- Email: info [AT] imidia.org

www.imi.europa.eu
Type 1 and type 2 diabetes impose a huge burden to welfare systems

Relative or complete decrease in insulin secretion underlies the development of type 1 and type 2 diabetes

Limited therapeutic options

Limited knowledge β-cell biology (function, survival, pathophysiology)

Lack of biomarkers for prognostic of β-cell failure

The IMIDIA project

New tools for the study of human β-cell development, function and survival

Biomarkers

Knowledge of novel pathways and sites that control β-cell development, function and survival

Non-Invasive Imaging of the Human Endocrine Pancreas
CONTROL OF BETA-CELL MASS

- **Neogenesis**
 - Cluster of new β-cells
 - Probably increased in type 2 diabetes

- **Apoptosis**
 - Apoptotic nuclei
 - Probably deficient in type 2 diabetes

- **Replication**

- **Hypertrophy**

- **Potential therapeutic target**

- **Duct cells**

- **Mitosis**
EXPECTED MAIN COMPETITIVE ADVANTAGE

Close interaction between academic teams, pharmaceutical companies and SMEs

Unique conjunction of expertise and will form a strong basis for a successful enterprise

Improvement of industrial competitiveness and Public Health in Europe

• **Content advantage**
 – All results transparent to all project participants during the project
 – “Validation” of new technologies / tools from academia during the project by participating industry

• **Time advantage**
 Access to generated IP within the project “foreground” for “research use”
The Path to innovative Diabetes Therapies: enhancing functional β-Cell Mass

Scientific key questions
Tools & Technologies

IMIDIA