Translational endpoints in Autism

Will Spooren
Project Coordinator
Autism - General Introduction

- ±1% of all children is diagnosed with autism representing nearly 5.5 million patients in the EU.
- The prevalence rate of autism is increasing 10-17 percent annually for which there is no obvious explanation.
- Treatment based on drugs developed for other indications that ameliorate behavioural symptoms with a high impact on individual functioning.
- No medication is available that can change the core symptoms of autistic disorders or improve the long-term outcome.
- ASD is characterized by a lack of evidence based therapy.
ASD and synaptic function

- Recent genetic studies have identified multiple candidate genes that may confer susceptibility to ASD.
- Several of these genes are linked to synaptic function.
- Mouse models recapitulating these mutations exhibit defects in behaviour and in synaptic physiology supporting the importance of corresponding proteins in ASD.
- Furthermore, common biological pathways for brain development and plasticity across ASD are starting to be identified.

- These findings point to a core deficit in synaptic function in many of the genetic forms of ASD.
Key New Developments (2)

Recent pre-clinical developments have brought major excitement:

- Using animal models of monogenetic diseases leading to ASD, key behavioural and neuroanatomical phenotypes have shown to be responsive to drug intervention:
 - mGlu5 receptor antagonists for Fragile X
 - Sirolimus for Tuberous Sclerosis
 - Statins for neurofibromatosis Type 1
 - Insulin-like Growth Factor-1 (IGF-1) for RETT syndrome.

- These approaches are currently in translation to the clinic, offering novel perspectives for the control of ASD even in adolescence or adulthood, a concept that was not generally believed only a few years ago.
Need for public-private collaboration

There are major advances in the understanding of underlying neurobiology of ASD, and there is emerging awareness that it is a viable treatable condition: this needs now to translate into registered drugs.

– An integrated clinical and pre-clinical ASD research approach, built on academia and industry strengths is missing in Europe.

To produce a real impact on this field, a united effort of a variety of stakeholders including academia, industry, regulators, foundations and patients' groups is urgently needed.
Objectives of the full project

This topic offers a unique opportunity to create a European wide strategy for ASD treatment integrating public and private strengths.

Key objectives:

• Set new standards in Research and Clinical Development to aid the drug discovery process.
• Develop and validate translational approaches for the advancement of novel therapies to treat ASD.
• Identify, standardize and develop expert clinical sites across Europe to run clinical studies and trials and so create an interactive platform for ASD professionals and patients.
• Evidence based treatment of ASD patients
 – Diagnosis, clinical assessment, outcome measures
Pre-competitive nature

- Connecting critical mass to exploit innovative advances in Autism
- Standardization between public and private organizations
- Rapid sharing of information to ensure progress
- Alignment across the whole value chain: research, clinical development, regulators and patients
Expected impact on the R&D process

- Identification of reliable and predictable assays
 - Cellular
 - Animal
 - Translational
- Standardization in research and clinical praxis
- Alignment of the field including regulatory praxis

- Europe as an area of preference to run well designed and controlled clinical studies with NME for Pharma and Academia.
Suggested architecture of the project

Work Package 1: In vitro systems development.
This work package will take advantage of emerging advances in the field of autism genetics and aim to develop in vitro model systems for drug characterization & evaluation.

- New assay development
 Examples:
 - Primary embryonic neuronal cultures
 - In vitro slice preparations
 - Embryonic and induced pluri-potent stem (iPS) cells
- Define phenotypes at synaptic, cellular and circuitry level
- Determine reliability and reproducibility of assays
- Use promising assays to assess pharmacological tool compounds
- Translation of assay endpoints to animal models and man
Work Package 2: Animal model development.

This work package should deliver recommendations on the most appropriate animal behavioural endpoints for use in genetic and/or environmental disease models relevant to ASD.

- Define translational measures of i.e. cognitive, affective and social behaviour in ASD animal models
- Develop and standardize outcome measures of ASD animal models
- Assess reliability and reproducibility across collaborating labs
- Assess and validate most promising models for pharmacological testing
- Use promising models to assess efficacy of pharmacological tool compounds
- Other relevant endpoints and recommendations
Work Package 3: Translational research development.

This work package should develop objective biomarkers linked to ASD to translate electrophysiological, imaging and pharmacological outcome measures from animal to man and back to animal.

- Identify translational objective markers of neuro-anatomical changes in animal models i.e. fMRI, PET
- Define phenotypes in models using markers to define shared common signatures among different ASD genes
- Use promising models to assess efficacy of pharmacological tool compounds
- Translate end-points from animal studies to ASD patients and back
- Establish the susceptibility for pharmacological challenges to any of the measures above
Work Package 4: Clinical research development.

This work package should facilitate and enhance scientific collaboration and exchange across Europe for ASD professionals – clinicians and researchers from both private and public sectors - and to significantly promote research and development of drugs for ASD.

- Assess Standards of care of ASD patients in Europe.
- Facilitate the implementation of Clinical Research to assess interventional pharmacological studies with Pharma and Academic sites.
- Validate diagnostic, biochemical, electrophysiological and imaging markers that will help to identify the disease at an early stage and improve detection of treatment outcome.
- Initiate pharmacogenomic assessment ("bio banking") from ongoing trials possibly linking to other libraries i.e. AGRE.
- Develop standardized assessments (outcome measures, treatment and long term follow up criteria across Europe).
- Develop an educational program together with key stakeholders to increase awareness/make the knowledge in ASD accessible to a wider public (establish symposia/ training courses for scientists/physicians, patients and their families).
Work Package 5: Data handling, management and integration.

The work package should provide the strategy and implementation for efficient handling, management and integration of all data produced by the project activities.

- Develop methods for rapid sharing and handling of data across work packages.

Work Package 6: Project management and communication.

The work package should cover all aspects of project management and coordination, including dissemination and communication strategy.

- Professional project management
Expected contributions of the applicants

The Applicant Consortium is expected to provide both **pre-clinical** and **clinical** expertise and ability for interdisciplinary and inter-sectorial work to cover the following critical fields:

- Preferably scientific and clinical expertise and leadership in ASD including a broad multidisciplinary dimension such as,
 - Innovative project design and science
 - Clinical trial expertise
 - Regulatory expertise
 - Data management and integration expertise
 - Involvement of Patient organisations
 - Educational program to create awareness
 - Professional Project management (specialized SME’s welcome)
Expected (in kind) contributions of EFPIA members

- **WP 1: Lead: Pfizer - Participants: Roche, Novartis, Johnson&Johnson, Eli Lilly**
 - In vitro technologies expertise and experiments
 - Neuro-anatomical and electrophysiological expertise and experiments

- **WP2: Lead: Johnson&Johnson - participants: Roche, Eli Lilly, Pfizer, Sigma Tau**
 - Behavioural models and generation of transgenic animals
 - Methods, expertise and experiments
 - Supplies of pharmacological tools

- **WP3: Lead: Roche - Participants: Eli Lilly, Johnson&Johnson, Novartis, Pfizer**
 - Biofluid biomarker development and experiments
 - Imaging expertise, methods and experiments
 - Translational behavioural procedures and experiments

- **WP4: Lead: Novartis - Participant: Roche, Eli Lilly, Pfizer**
 - Clinical and neuropsychological expertise and experiments
 - Imaging and electrophysiological expertise and experiments
 - Experience, expertise and data from relevant clinical trials - past and present
 - Clinical trials supplies and logistics
 - Regulatory approach
The establishment of an integrated approach using cellular assays, animal models and translational biomarkers to enable drug discovery and development in ASD.

- The development of cellular/animal models with a close link to the neurobiology of ASD and that supports translation from animals to patients.
- The validation of biomarkers that aid the drug discovery process to predict pharmacodynamic responses to drugs, to allow patient stratification and support regulatory submissions.
- An integrated clinical and preclinical research approach for ASD built on academia and industry strengths across Europe.
- The promotion of an educational program to increase awareness/make the knowledge on all aspects of ASD accessible to a wider public, involving patient organizations.
EFPIA Consortium

Open Information Day – 22 October 2010 - Brussels
Thank you for your attention!
All questions should go through the IMI Executive office

infodesk@imi.europa.eu

www.imi.europa.eu