Critical Path Institute: Coalition Against Major Diseases (CAMD)

Qualification at FDA and CHMP

IMI, Barcelona

Marc Cantillon, MD
Executive Director, CAMD, Critical Path Institute
Memorandum of Understanding
Between the United States Food and Drug Administration and the C–Path Institute

AGENCY: Food and Drug Administration, HHS.

“purpose... to establish an overarching framework for collaboration... to foster development of new evaluation tools to inform medical product development”
Independent and Trusted Third Party

- Public & foundation funding of infrastructure
 - No funding from regulated companies
- Federal Grants – Critical Path Public/Pvt Partnerships
- Philanthropy
- Transparency
- FDA, EMA and PMDA participation
Qualification of New Testing Methods

A **new** pathway.....

Planning Phase
- Legal Agreement, Coordinating Committee, Planning etc
- Work Scope Document

Execution Phase
- Working Groups
 1. ...
 2. ...
 3. ...
 4. ...
- Methods & Results Sharing

FDA/EMA Review Phase
- FDA/EMA Review
- BQRT
- Qualified Methods

"Qualified"

Greater Efficiency & Safety

Scientific Consensus

- FDA
- EMA
Creating New Regulatory Science

Predictive Safety Testing Consortium (PSTC)
DRUG SAFETY

Patient-Reported Outcome (PRO) Consortium
DRUG EFFICACY

Coalition Against Major Diseases (CAMD)
UNDERSTANDING DISEASE

Polycystic Kidney Disease Consortium (PKD)
IMAGING BIOMARKERS

Critical Path to TB Drug Regimens (CPTR)
COMBINATION DEVELOPMENT PARADIGM
Type of Biomarker

- Safety
 - Kidney earlier than BUN / creatinine
- Predictive & Prognostic for decision making
 - Safety monitoring
 - Go/No Go
 - at nomination-intermediate-confirmatory stage
 - Phase I in normals
 - Phase 2/3 in patients
Ideal features of biomarkers to detect Kidney Injury

- Identifies injury early
- Reflects degree of toxicity
- Similar reliability across multiple species, including humans
- Localizes site of injury
- Tracks progression of injury and recovery
- Well-characterized with respect to limitations
- Accessible in readily available body fluids/tissues

Nephrotoxicity Biomarkers: Injury Location & Assay

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Proximal Tubules</th>
<th>Distal Tubules</th>
<th>Glomerulus</th>
<th>Injury Response</th>
<th>Leakage Markers</th>
<th>Functional Biomarkers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteopontin</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Serum & Urine Clusterin</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NGAL</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Serum & Urine Cystatin C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Urine Total Protein</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GST-π</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-2 Microglobulin</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GST-α</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleukin-18</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver FABP</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retinal Binding Protein 4</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine KIM-1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Urine NAG</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Osteoactivin</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tgfβ1</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine Creatinine</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Urine Microalbumin</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Injury Location & Assay

<table>
<thead>
<tr>
<th>Injury Location & Assay</th>
<th>Proximal Tubules</th>
<th>Distal Tubules</th>
<th>Glomerulus</th>
<th>Duct</th>
<th>Collecting</th>
</tr>
</thead>
</table>

Biomarker Prioritization:
- Green: tier 1
- Blue: tier 2
- Red: tier 3
Summary of “Fit for Purpose” Claims and Decisions

<table>
<thead>
<tr>
<th>Urinary Biomarker</th>
<th>Rat Kidney Pathologies</th>
<th>Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Can Outperform BUN & Serum Cr</td>
<td>Monitor Glomerular Pathology</td>
</tr>
<tr>
<td>Cystatin C</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>β2-Microglobulin</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Total Protein</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>KIM-1</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Clusterin</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Trefoil Factor 3</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
FOR IMMEDIATE RELEASE
P06-40
March 16, 2006

FDA and the Critical Path Institute Announce Predictive Safety Testing Consortium
Consortium Will Share Tests to Understand Safety of Potential New Drugs Earlier

The Food and Drug Administration (FDA) and The Critical Path Institute (C-Path) today announced the formation of the Predictive Safety Testing Consortium between C-Path and five of America’s largest pharmaceutical companies to share internally developed laboratory methods to predict the safety of new treatments before they are tested in humans. The FDA, while not a member of the Partnership, will assist it in an advisory capacity. This unprecedented sharing of potential early indicators of clinical safety may streamline the cost and time of preclinical drug safety evaluation and better inform the use of “personalized medicine”. The Consortium was announced today at a press conference detailing the release of the Critical Path Opportunities List -- 76 initial research priorities that, if accomplished, will modernize the drug development process by 2010 and help get new medical discoveries to Americans faster and at a lower cost.
IND Reviews with KIM-1 Data

Number of IND Reviews with KIM-1 Data

Semester

1. WHEN is a new biomarker ready for use?

2. WHEN should it be used – under what conditions, and for what specific purpose?

3. WHEN does a change constitute a real signal that warrants interrupting dosing?
Objectives

Develop a scientific consensus on which methods are “qualified for use” in drug development among......

1) those who will use the methods (industry),

AND

2) those who will accept the methods (RA).
Advantages of predictive biomarker in AD, PD

- Early Identification allows early intervention
 - Identifies before dementia stage in AD
 - Identifies before full motor spectrum in PD
- Diagnostic Specificity: Increased likelihood of successful intervention
- Progression to AD dementia or full PD (or study endpoint) within a reasonable time
- Shorter studies with smaller sample size
- More uniform patient populations
Hippocampal Atrophy as Predictor of MCI Progression to AD

STand Structural Abnormality iNDex (STAND)-score
Colored regions indicate regions with maximum descriminatory power

- STAND score shows high test accuracy in differentiating AD from Controls
- Those with highest STAND scores show lowest probability of remaining dementia free.

<table>
<thead>
<tr>
<th></th>
<th>STAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUROC</td>
<td>0.90</td>
</tr>
<tr>
<td>Threshold%</td>
<td>0.25</td>
</tr>
<tr>
<td>Sensitivity (%)</td>
<td>71</td>
</tr>
<tr>
<td>Specificity (%)</td>
<td>95</td>
</tr>
<tr>
<td>Test accuracy (%)</td>
<td>94</td>
</tr>
<tr>
<td>Positive predictive value (%)</td>
<td>93</td>
</tr>
<tr>
<td>Negative predictive value (%)</td>
<td>79</td>
</tr>
<tr>
<td>Likelihood ratio</td>
<td>15.6</td>
</tr>
</tbody>
</table>

Data from Vemuri (2009) Neurology 73:287 and from ADNI Seattle 2009
Advantages of predictive biomarker in AD, PD

- Early Identification allows early intervention
 - Identifies before dementia stage in AD
 - Identifies before full motor spectrum in PD
- Diagnostic Specificity: Increased likelihood of successful intervention
- Progression to AD dementia or full PD (or study endpoint) within a reasonable time
- Shorter studies with smaller sample size
- More uniform patient populations