Perspectives on anti-infective therapeutic agents as part of a biopreparedness strategy

Kenny Simmen, Ph.D.
Vice President, Innovation

Infectious Diseases and Vaccines
Infectious Diseases are still on the rise...

Trends/Aspirations:

- Improved prevention & treatment of respiratory infections (influenza / RSV)
- Curing versus chronic management (today – HCV, future – HBV & HIV)
- Disease interception for public health benefit (dengue, ebola, zika)
- Enhanced “bio-preparedness” to tackle novel emerging infections

Impact of social media / channels on disease awareness..
Which pathogens to prepare for?

The Known:

“Naturally occurring outbreaks”

- Respiratory Infections (influenza/SARs/MERS, coronaviruses)
- Filoviruses (Ebola, Marburg)
- Flaviviruses (dengue, Zika, West Nile)
- Alphaviruses (chikungunya)
- Food and water borne bacterial infections
 - E.coli, Shigella, Salmonella

“Unnaturally occurring epidemics = deliberate disease outbreaks”

- Anthrax / Y. pestis / Burkholderia
- Smallpox
- Synthetic viruses/engineered pathogens

The Unknown:

- ~130 viruses currently known to infect humans
- New pathogenic forms may arise & spread naturally due to intrinsic variation & selection
- Changes in zoonotic vectors
- Malicious synthetic viruses/engineered pathogens derived from “dual use” research of concern (DURC)
Toolbox of current antivirals: saving patients lives

<table>
<thead>
<tr>
<th>Category</th>
<th>Target Viruses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymerase inhibitors</td>
<td>HSV, CMV, HIV, HBV, HCV</td>
</tr>
<tr>
<td>Polymerase inhibitors - Non nuc</td>
<td>HIV NNRTIs, HCV NNI</td>
</tr>
<tr>
<td>Protease Inhibitors</td>
<td>HIV, HCV</td>
</tr>
<tr>
<td>Fusion / Entry Inhibitors</td>
<td>HIV (gp41, CCR5), RSV</td>
</tr>
<tr>
<td>Integrase Inhibitors</td>
<td>HIV</td>
</tr>
<tr>
<td>Replication Inhibitors</td>
<td>HCV NS5A</td>
</tr>
<tr>
<td>Release/Egress Inhibitors</td>
<td>Influenza (neuraminidase)</td>
</tr>
<tr>
<td>Antisense</td>
<td>CMV</td>
</tr>
<tr>
<td>Ion Channel Blockers</td>
<td>Influenza</td>
</tr>
<tr>
<td>Interferons</td>
<td>HCV, HBV</td>
</tr>
</tbody>
</table>
Examples of therapeutic drug discovery approaches to the “known” viral pathogens:

Targeting conserved features of viral life-cycle:

- **POLYMERASE INHIBITION** (with nucleoside analogs).
- **Advantages:**
 - Target multiple related viruses with same /similar molecule, due to conservation of enzymatic site.
 - Considerable pharma/academic knowledge base on chemical manufacturing / clinical development pathway.

Targeting pathogen-specific features of viral life-cycle:

- **VIRAL ENTRY / FUSION** (with biologics/mAbs)
- **POLYMERASE INHIBITION** (with non-nucleosides)
- **PROTEASE INHIBITION** (small molecules)
- **GENOME TARGETING** (*gene silencing/editing*)
- **Advantages:**
 - Pathogen-specific molecules. Less chance of generating drug-resistance in co-infecting viruses. *Challenging discovery path...especially gene editing.*
R&D Process - & IMI Antibiotic precedents

Drug Discovery
- Target identification
- Target validation
- Screening / design
- Lead identification
- Lead optimization
- NME (new molecular entity) declaration

Early Development
- Scale up & formulation
- IND-enabling TOX/PK
- Phase I
 - PK/PD
 - Safety
 - Dose Definition
- Phase IIa - proof of concept (POC)

Late Development
- Phase IIb - Phase III
- Manufacturing for commercial product
- NDA (new drug application) filing & approval
- (Line extensions)
- Post-approval studies

IMI ND4BB – ENABLE
IMI ND4BB – COMBACTE
IMI ND4BB – TRANSLOCATION

Proposed “ECRAID” H. Goossens et al
What are the barriers to rapid discovery, development & approval of novel agents today?

- Lack of clarity on when a threat is imminent – need for a clear signal from public health bodies in EU to initiate special programs.
 - Does this require better epidemiology integration across EU states?
- Lack of certainty on sustained state / EU funding for either academic research or biotech/pharma funding for programs on pathogens that may resolve naturally before the next budget cycle...
- Lack of certainty on regulatory approval pathways (how to prove efficacy?), and reimbursement approach.
 - “no profit / no loss”, or a “shared risk / shared benefit” approach?
- Industry can work most effectively when an existing basic research knowledge-base has established “R&D toolbox” of reagents and models (preclinical and translational) that can enable drug development.
 - Is there a role for PPPs in enhancing the R&D knowledge in EU on these emerging pathogens, or on the novel technologies themselves (eg biologics/gene editing)? Access to BSL4 facilities.
 - Is there still sufficient pharma / biotech expertise in ID in Europe?
 - Should real drug discovery be initiated, or just the“capability”?
How to overcome the lack of “market pull” to support R&D in these pathogens?

Examples of R&D stimulus: from anthrax to ebola

PROJECT BIOSHIELD (US Dept of Health & Human Services) 2004

- $3.4B in Special Reserve Fund (2004-08), federal acquisition program
- Enhanced NIH ability to expedite R&D of “medical countermeasures against biological, chemical, or radiological agents and to speed their delivery and use in time of an attack”
- Gave FDA authority to grant Emergency Use Authorization before licensure
- Initial focus on four threats: anthrax, smallpox, botulinum toxin & radiological / nuclear agents
- Countermeasures acquired: anthrax vaccines and treatments for anthrax and botulism
How to overcome the lack of “market pull” to support R&D in these pathogens?

Examples of R&D stimulus: from anthrax to ebola

> 2009: US Dept of HHS / NIH / BARDA* and the move to broader funding for biosecurity (including natural threats)

- The National Medical Countermeasures Response Infrastructure
- 2009 Pandemic Influenza Stockpiling Programs (vaccine/antiviral)
- Integrated Portfolio Approach; influenza (Janssen; Visterra), antibiotics (GSK, AZ)
- 2012 HHS awards $400M to establish three Centers for Innovation in Advanced Development and Manufacturing (CI ADMs) – covering 35% of costs over 5 years to increase capacity in response to a need (Novartis, Emergent, Texas A&M)
- 2016 - CARB-X Early stage accelerator for antibiotics (with The Wellcome Trust, UK AMR Centre, California Life Sciences Institute, Mass Biotech Council)
- Zika – coordinated response – funding diagnostics, vaccines & therapeutics

> 2014: EU IMI DRIVE-AB, Driving re-investment in R&D and responsible antibiotic use.

*BARDA: Biomedical Advanced Research and Development Authority
On-line interfaces with BARDA and IMI

- Relatively low barrier to contact either

Partner with BARDA

BARDA is interested in learning more about actual and potential medical countermeasures for Zika. Product developers who are interested in partnering with BARDA on medical countermeasures to fight Zika virus infection can submit their ideas to us using the following mechanisms:

- Request a Tech Watch Meeting via MedicalCountermeasures.gov
- Submit a proposal under BAA-16-100-SOL-00001: Support for diagnostic tests, and blood screening assays
- Submit a proposal under BAA-16-100-SOL-00003: Support innovation through platform technologies to enhance capabilities for the development and manufacturing of medical countermeasures

Request Meeting

- **Vaccine**
 - Create a meeting request to review Vaccine-related products and services.
 - [Request Meeting]

- **Therapeutic**
 - Create a meeting request to review Therapeutic-related products and services.
 - [Request Meeting]

- **Diagnostic**
 - Create a meeting request to review Diagnostic-related products and services.
 - [Request Meeting]

- **Other**
 - Create a meeting request to review other products or services.
 - [Request Meeting]

Would you like to meet with a federal agency regarding a product that you are developing?
The potential role of European PPPs

ADVANTAGES

- Potential role to link the EU/WW epidemiology trigger to the initiation of rapid action on vaccines or therapeutic programs (if new threat)
- Ability to integrate existing pharma activities with academia/EMA/citizen groups. Helpful for prioritization.
- Enhance EU funding to leading EU researchers in the ID field, and potentially to fund the late-stage clinical development.
- Focus on gaps not yet addressed:
 - Disease and pathogen research on neglected threats, including diagnostics
 - Tools / technology platforms – biologics / gene editing / advanced therapies

DISADVANTAGES (real / perceived)

- Lag time to initiate work via IMI is a potential issue, especially given the urgency needed (needs to be months, like Ebola+).
- Clarity needed on true value of incoming platform technology from EfPIA companies, and alignment on responsibilities
- Risk of committing to the “wrong” threat / contract flexibility needed.
Lessons Learned / Janssen

US NIH - collaboration/contract on Influenza biologics (2009-2013)

US NIAID/DMID - contract on multivalent Filovirus vaccines (2008-)

EU IMI2 – heterologous prime-boost Ebola vaccine regimen
EBOLA+ (Ad26.ZEBOV and MVA-BN-Filo) – clinical development

✓ Long term engagement needed with US & EU.
✓ Rapid progress can be made (ebola example).
✓ Partners & funders need to be aligned/committed.
✓ Best to have smaller, more focussed consortia.
✓ Flexibility needed to adapt the workplans.
✓ IP is simpler in “bilateral” arrangements (NIH/BARDA)
Multivalent Filovirus Vaccine

NIH-DMID contract HHSN227200800056C

- IMI-2 EBOLA+
- BARDA

Multivalent program
NIH contract 2008

2014

Monovalent Ebola program

Multivalent program

NIH-DMID

Ad26.Filo Vaccine

MVA-BN®-Filo

Ad35.Filo Vaccine

MVA-BN®-Filo

Ebola Zaire

Sudan
Marburg

EBOLA+
Ebola Acknowledgements

Bavarian Nordic

EBOVAC1 IMI2 Consortium
Janssen, London School of Hygiene & Tropical Medicine, Institut National de la Santé et de la Recherche Medicale (Inserm), University of Oxford

EBOVAC2 IMI2 Consortium
Janssen, London School of Hygiene & Tropical Medicine, Institut National de la Santé et de la Recherche Medicale (Inserm), University of Oxford, Inserm Transfert, Le Centre Muraz

EBOMAN Innovative Medicines Initiative (IMI2) Consortium
Janssen, Bavarian Nordic, Vibalogics

EBODAC IMI2 Consortium
Janssen, London School of Hygiene & Tropical Medicine, Grameen Foundation, World Vision of Ireland

National Institute of Allergy and Infectious Diseases (NIAID)

Biomedical Advanced Research and Development Authority (BARDA)

HIV Trial Network (US – analysis of cellular immune response), Battelle (US, ELISA) and Monogram (US, Virus Neutralization Assay)

and thanks to all staff & volunteers involved in the clinical studies and program

The Janssen filovirus vaccine program has been funded in part with direct Federal funds from the National Institute of Allergy and Infectious Diseases (NIAID), part of National Institutes of Health (NIH), under Contract Number HHSN272200800056C. The content of this presentation does not necessarily reflect the views or policies of the Department of Health and Human Services.

Janssen Ebola vaccine program has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under Grant Numbers [EBOVAC1 (115854), EBOVAC2 (115861), EBOMAN (115850), EBODAC (115847)]. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA.

This project has been funded in whole or in part with Federal funds from the Department of Health and Human Services; Office of the Assistant Secretary for Preparedness and Response; Biomedical Advanced Research and Development Authority, under Contract No. HHSO100201500008C.